## **DNV·GL**

Deep sea shipping on the way to decarbonization

### **Christos Chryssakis**

14 June 2018

SAFER, SMARTER, GREENER

## **Short vs. Long Term Challenges – Global Sulphur Cap vs. Greenhouse Gas Reduction Targets**





## IMO GHG timelines, including possible key measures



### **Initial GHG strategy**

■ 2008: Base year

2030: 40% carbon intensity improvement

**2050:** 

70% carbon intensity improvement

• GHG reduced by 50%

**Short-term measures: 2018 - 2023** 

Mid-term measures: 2023 - 2030

Long-term measures: 2030 - 2050

## IMO GHG timelines, including possible key measures



### Short-term 2018 - 2023

- Tighter EEDI & SEEMP
- Energy efficiency indicators
- Speed reduction
- National Action Plans

### Mid-term 2023 - 2030

- Energy efficiency measures for new <u>and existing</u> ships, using new indicators
- Carbon pricing / MBM
- Plan for low carbon fuels

### Long-term 2030

- Development of zero carbon fuels
- New/innovative emission reduction mechanisms



### What are the options?



competitive edge in the market

DNV·GL



## Total scrubber projects (as of 1st June 2018): 817



### **Business Cases**





Disclaimer: Graphs for illustration purposes only, it should not be used as a basis for investment decisions.

### **Impact of scrubbers on GHG reduction**

- Assumptions
  - Moderate trade growth
  - Scrubbers installed until 2030
  - No speed reduction
  - No energy efficiency measures
  - Short investment horizon
  - Low Carbon Fuels: high cost
- Scrubbers are attractive for large ships





### List of fuels covered and content

## Fuels

- HFO / MGO
- LNG
- LPG
- Methanol
- Biofuels
- Hydrogen

# Technologies

- Wind-assisted propulsion
- Batteries
- Fuel cells

To assess all fuels or technologies in a comparable manner, the information is categorized as follows:

**1. Price:** Accounts for production process, raw materials, market price and the reasoning behind it, current/foreseeable (five years) price/expected price (beyond five years)

2. Infrastructure: Current/future distribution network, bunkering, availability

3. Regulation: Existing/expected regulations, consequences

4. Availability: Current / possible future production as related to the requirement in shipping

5. Environmental impact:  $CO_2$ ,  $NO_X$ ,  $SO_X$ , particulate matter (PM) and others

6. Technology: Availability of current/future technology, foreseeable changes

7. CAPEX: Engines, storage, processing, retrofitting

**8. OPEX:** Exhaust cleaning, scrubber, additional costs for fuel change

Please note that the following gives a brief overview only. For additional information, please refer to our Web platform on alternative fuels, which will be launched later this year.

https://www.dnvgl.com/news/dnv-gl-launches-alternative-fuels-white-paper-116424

## CO<sub>2</sub> emissions of fuel alternatives in shipping



- For TTP no CH<sub>4</sub> slip effects considered
- For WTT CH<sub>4</sub> slip is considered



TTP

TTP= Tank To propeller WTT=Well To Tank

14 June 2018

## **Availability of alternative fuels**





Source: Figures represent 2016 statistics. Compiled form "bp-statistical-review-of-world-energy-2017-underpinning-data.xlsx" and "BWK, Bd 69(2017), No 5"

### **Batteries, Fuel Cell Systems and wind assisted propulsion**

- Batteries as an 'alternative fuel' have major potential for ships running on **short distances**, and for any ship when used to **increase the efficiency** of the propulsion system. They **cannot substitute fuel** in deep-sea shipping.
- Ship applications of fuel cell technology are still in their **infancy**.
- Wind-assisted propulsion has a certain potential to reduce fuel consumption when used on slow ships, but the business case remains difficult.

#### 3.2 ALTERNATIVE TECHNOLOGIES



**Batteries** 



Fuel Cell Systems



Wind assisted propulsion

### **Potential impact of batteries and fuel cells**

- Key Assumption:
  - Quick uptake of fully electric ships after 2030
- 1/3 of ships sailing in 2050 fully battery powered
- Fuel consumption corresponds to ≈3% of total fuel consumption in 2050

#### ⇒ Liquid / Gaseous low carbon fuels are required







## **Energy Efficiency Measures**

| ENERGY<br>EFFICIENCY           | FUEL SA<br>(DEPENDING ON SE                                                                                                                           |             |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                | MAIN ENGINE                                                                                                                                           | AUXILIARIES |
| Hull Form –<br>New buildings   | 12-17%                                                                                                                                                | -           |
| Hydrodynamics –<br>Retrofit    | 13-20%                                                                                                                                                | -           |
| Machinery improvements         | 4-8%                                                                                                                                                  | 12-23%      |
| Waste Heat Recovery            | 0-8%                                                                                                                                                  | -           |
| Hybridization                  | 3-15%                                                                                                                                                 |             |
| Operational measures           | 3-11%                                                                                                                                                 | -           |
| Cold Ironing                   | -                                                                                                                                                     | 30-70%      |
| Renewable Energy (Solar, Wind) | 0-10%                                                                                                                                                 | 0-2%        |
| Air Lubrication                | 3-5%                                                                                                                                                  | -           |
| CUMULATIVE PER<br>VESSEL       | 21-37%                                                                                                                                                |             |
| Speed reduction                | Fuel savings depend on % of speed reduction.<br>New vessels may have to be used to cover transport<br>demand, therefore reducing the overall savings. |             |



Moderate growth, short investment horizon

## **Impact of ship type and size**



## **Speed Reduction**



## **Impact of trade growth**









### How far can we go?

- Strong uptake of
  - Biofuels
  - Energy efficiency measures
- Speed reduction 30%





## **Moving Forward**



# Thank you for your attention

Christos Chryssakis, Business Development Manager christos.chryssakis@dnvgl.com +47 915 54 678



www.dnvgl.com

SAFER, SMARTER, GREENER



are the properties of companies in the Det Norske Veritas group. All rights reserved.