# AMMONIAKI I MARITIM © SEKTOR

# Ammonia in the fuel mix towards 2050

**DNV GL Energy Transition Outlook 2019** 

**Ole Johan Harnes** 12 November 2019

SAFER, SMARTER, GREENER

**DNV**·GL

#### DNV·GL



## **MARITIME FORECAST TO 2050**

**Energy Transition Outlook 2019** 

## The foundation for the outlook is the IMO GHG strategy

#### Units: GHG emissions



#### **Decarbonization options for shipping**



Significant GHG reduction can be achieved by technical and operational measures

| <ul> <li>Up to 100% GHG reduction can only be achieved with Alternative fuels. Barriers to<br/>implementation includes:</li> </ul> |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Alter Cost routes                                                                                                                  |  |  |  |
| <ul> <li>Availability and infrastructure</li> </ul>                                                                                |  |  |  |
| – Onboard storage                                                                                                                  |  |  |  |
|                                                                                                                                    |  |  |  |

#### **Decarbonization options for shipping - alternative fuels and energy sources**

**Three** main "family types" of fuels, categorized based on energy source.

- Similar fuels can originate from different energy sources, but lifecycle emissions and cost vary greatly
- A given energy converter (e.g. combustion engine) may apply many alternative fuels



#### Renewable **electricity** in batteries is energy efficient and carbon free

- **Hydrogen** (H<sub>2</sub>) is a carbon-free alternative energy carrier produced from:
- Electrolysis using electricity from renewables or nuclear (i.e. "green" H<sub>2</sub>)
- Reforming natural gas with CCS (i.e. "blue" H<sub>2</sub>)
- Carbon neutral fuels can also be produced from renewable **electricity and H**<sub>2</sub> (electrofuels):
  - Diesel, methane and methanol (from combining  $H_2$  and  $CO_2$ )

Ammonia (from combining  $H_2$  and nitrogen)





<sup>(</sup>ICE- Internal combustion engine)

## **Biofuels start to gain traction in the market**

#### Biofuels

- has carbon emissions at the stack, but the emission is considered as being part of the natural carbon cycle
- exist in gas-phase and liquid-phase
- can be **blended** with conventional fuels or
- used as **drop-in** fuels fully substituting conventional fossil fuels
- challenges relate to price and sustainable production in sufficient volumes



#### **Other fuel options**

## LPG

- 2017: no activity
- 2019:
  - 4 LPG carriers retrofits
  - 7 new LPG carriers ordered

## Methanol

- 1 passenger vessel
- 7 methanol tankers
- 5 new methanol tankers orderd
- Main challenge: fuel cost

## Hydrogen

- 2 Passenger ferries ordered
- Main challenges:
  - CapEx
  - Fuel cost
  - Storage space
- Mainly for short-sea shipping

### Ammonia

- Can be used in internal combustion engines
- Suitable for deep sea shipping
- Easy to store
- Main challenge: very toxic and corrosive
- Ammonia tankers already interested

DNV GL just published Class Rules for LPG as a fuel DNV GL has Low Flashpoint Liquid fuel rules that address methanol since 2013 DNV GL working with industry partners for removing barriers both for hydrogen and ammonia

### Alternative fuels must evolve over time to increase marked penetration



It took LNG around 20 years to climb all steps. To reach the IMO targets, carbon-neutral fuels must mature faster!

## Alternative fuels will require more space on board (approximate values)



#### Units: Volumetric energy density (MJ/I)

#### The Alternative Fuel Barrier Dashboard: Indicative status of key barriers for selected alternative fuels



#### Pathway Model; We explore the impact of specific GHG regulations

#### **Regulatory input to the model: Three different policy designs**

What would happen if **no further decarbonization policies** are put in place?

2 What is the effect of stricter operational requirements?

**3** What if main focus is on stricter **design requirements**?



#### **CO<sub>2</sub>** emissions towards 2050 in the 'Design requirements' pathway

Both the **design** and **operational** focused regulatory pathways fulfill the IMO ambitions:

- New fuels, alongside energy efficiency, will play a key role.
- Carbon-neutral fuels need to supply 30%– 40% of the total energy in 2050.

The "Current policy" pathway **is not** fulfilling the IMO ambitions.



#### Units: CO<sub>2</sub> emissions (Mt)

#### **Several ways to meet the IMO targets - policy matters**

Focusing on **operational requirements**, the uptake of alternative fuel for newbuilding's is more gradual If main focus is on **design requirements**, the shift in fuel and fuel-converter technology on newbuildings is very abrupt





LNG play an important role - transition to carbon neutral fuels will be needed

## The three pillars of the bridging philosophy



#### H<sub>2</sub>, HVO, LBG, LNG, LPG, MGO, NH<sub>3</sub>, etc.

H<sub>2</sub>, hydrogen; HVO, hydrotreated vegetable oil; LBG, liquid biogas; LNG, liquefied natural gas

LPG, liquefied petroleum gas; MGO, marine gas oil; NH<sub>3</sub>, ammonia

©DNV GL 2019

#### Fuel flexibility and bridging technologies - the three pillars



**Bridging** technologies can facilitate the transition from traditional fuels, via fuels with lowercarbon footprints, to carbon-neutral fuels



### **Fuel flexibility and bridging technologies**

 can facilitate the transition from traditional fuel, via fuels with lower-carbon footprints, to carbon-neutral fuels  require limited investments and modifications along the way



DNV.GL

### **Key findings**

- Shipping decarbonization is a must
- Uptake of alternative fuels is picking up, but needs a breakthrough to the large ocean going ships
  - In addition to LNG, carbon-neutral fuels will be needed towards 2050
  - Bridging technologies and fuel flexibility can smoothen the transition from traditional fuels
- Ships should be future proof in a changing environment, securing competitiveness and mitigating the carbon risk
- We have provided tools to support policy makers, ship owners and other stakeholders

